The Krull-Schmidt theorem for categories of finitely generated modules over valuation domains.
نویسندگان
چکیده
منابع مشابه
The Remak-Krull-Schmidt Theorem on\ Fuzzy Groups
In this paper we study a representation of a fuzzy subgroup $mu$ of a group $G$, as a product of indecomposable fuzzy subgroups called the components of $mu$. This representation is unique up to the number of components and their isomorphic copies. In the crisp group theory, this is a well-known Theorem attributed to Remak, Krull, and Schmidt. We consider the lattice of fuzzy subgroups and som...
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملKrull-schmidt Categories and Projective Covers
Krull-Schmidt categories are additive categories such that each object decomposes into a finite direct sum of indecomposable objects having local endomorphism rings. We provide a self-contained introduction which is based on the concept of a projective cover.
متن کاملFinitely Generated Modules over Pullback Rings
The purpose of this paper is to outline a new approach to the classii-cation of nitely generated indecomposable modules over certain kinds of pullback rings. If R is the pullback of two hereditary noetherian serial rings over a common semi{simple artinian ring, then this classiication can be divided into the classiica-tion of indecomposable artinian modules and those modules over the coordinate...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1990
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12286